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ABSTRACT

It is widely known that the improved performance of H-mode plasma results mainly from a formation of
an edge transport barrier, called the pedestal, which is a narrow region of strong pressure gradient near the edge of
plasma. A predictive capability for the conditions at the top of the pedestal is important, especially for predictive
simulations of future experiments. New models for predicting the temperature values at the top of the pedestal for
type III ELMy H-mode plasma are developed by using three different approaches: one empirical approach and two
different theory-based approaches. For an empirical model, a scaling law of pedestal temperature in terms of
plasma controlled parameters — including plasma current, magnetic field, heating power, hydrogenic mass, major
radius, aspect ratio, and elongation — is deduced from experimental data. For the first theory-based approach, a
pedestal model is developed using a calculation of thermal energy in the pedestal region and on accepted scaling
laws of energy confinement time. For the second theory-based approach, a pedestal model is developed based on
magnetic and flow shear stabilization and ballooning mode pressure gradient limit concept. Predictions from these
models are compared with experimental data from the ITPA Pedestal Database version 3.2. Statistical quantities,
such as Root-Mean Square Error (RMSE) and offset values, are computed to quantify the predictive capability of
the models. It is found that the predictions using an empirical model yield the best agreement among the model
developed model with the RMSE of 25.9%. For theory-based models the prediction of the pedestal temperature
values are moderately well with the RMSEs between 30% and 42%. The IPB98(y,3) scaling law yields with best

agreement among theory-based models with RMSE of 30.4%.

Keywords: Plasma, Pedestal, Type I1I ELMy H-mode, Model

1. INTRODUCTION

Physic of plasma in tokamaks comprises of multiple complicated physical processes on
various scales, giving rise to many challenges in modeling tokamak plasma behaviors. In the core
region of plasma, where temperature and particle densities are high, physical processes for this
region are fairly-well understood. In the outer region of plasma — normally called a pedestal —
,where temperature and particle densities are much lower; the physical processes are governed by
atomic physics. The multi-scale processes in plasma require multiple models for different tasks, and
these models must be integrated to fully understand plasma behaviors such as temperature and

density profiles.
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At the top of the pedestal region, pedestal conditions (e.g. temperature, pressure and
density) are normally used as boundary conditions in order to predict the core region. These
boundary conditions allow one to simulate plasma profiles from the pedestal point inward to the
center " °. Pedestal temperature models have been shown to provide satisfactory predictions of
boundary conditions in A-mode plasma discharges, especially those related to Edge Localized

10, 11

Modes (ELMs) ELMs are commonly found in magnetically confined plasma experiments,
where it is observed that the plasma periodically peels itself off like an avalanche, often called ELM
crashes, leading to rapid (of the millisecond order) losses of plasma energy and particles (roughly 5-

4,9,12, 15
)

10% . ELMs are believed to caused byMHD instability occurred near the edge of H-mode
plasma. Repetitive ELMs generally degrade the global particle and energy confinement time and
deposit high loads on the divertor plates causing them to erode quickly. However, ELMs can also be
beneficial in removing plasma impurities at the edge of plasma "

In general, ELMs can be detected from measuring plasma energy or Hy or Dy, signals B ]5,
and are classified into three types (denoted by type I, type II and type III) according to the
dependence of repetition frequency on heating power; the occurrence of magnetic precursors; and
the MHD instability with respect to the ideal ballooning criterion. See Reference no. 12,14,15 for
more details.

It should be remarked here that type 11l ELMs are sometimes called small ELMs, where the
frequency decreases as heating power increases. In type III ELMs, the plasma edge pressure is
significantly below the ideal ballooning limit, and the magnetic precursor oscillation is coherent
with frequency around 50-70 kHz e, Compared with type I, a type III ELM corresponds to lower
pressure gradient prior to the crash, but to a significantly higher frequency. Generally, a type III
crash produces less energy and particle losses than a type I crash ’,

Previously, pedestal temperature models have been developed for type I ELMy H-mode
plasma. In this work, the pedestal temperature model is developed for a type IIl ELMy H-mode
plasma. The pedestal temperature models based on energy distribution using accepted H-mode
scaling laws of energy confinement time as well as an empirical temperature model are developed to
predict pedestal temperature values from five tokamaks. The predicted results are compared with
experimental results from the ITPA Pedestal Database (Version 3.2) 2 Thenl, statistical analyses

such as root-mean-square errors (RMSE) and offset values are calculated to quantify the agreement.
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This article is organized into four parts. A pedestal temperature model based on energy
distribution with H-mode scaling laws and a pedestal temperature model base on magnetic and flow
shear stabilization with width scaling are described in Section 2. The results and discussions from
our statistical analysis are included in Section 3 as well as an empirical pedestal temperature model.

Finally, conclusions are summarized in Section 4.

2. MODELING

2.1 PEDESTAL TEMPERATURE MODEL BASED ON ENERGY DISTRIBUTION

The energy loss mechanism from the pedestal comes mainly from the thermal conduction
down the steep edge gradient characterizing the pedestal region. The thermal energy at the pedestal
can be taken as

Wiea = CNpegK oV
oy
where 7, ,is the pedestal density; & is Boltzmann’s constant; 7', is the pedestal temperature; and V’
is the plasma volume, which can be estimated by
s 52]

V =27°Ra’k|1-— -~
4R 4

(2)
where K and O are, respectively, the elongation and triangularity at the separatrix, respectively; R
and a are major radius and minor radius, respectively, of a tokamak. The constant ¢, is often taken
to be 2 or 3.

Moreover, W, can also be computed from the total thermal energy W,

, in the system;

namely,
Wped = C2Wth
(3)
where c, is a fraction of total thermal energy at the pedestal and is often estimated by taking as ¢, =
0.35. Here we leave the constants ¢, and ¢, undetermined.
In addition, the release of thermal energy depends directly on the energy confinement time

T, and the power supplied to the plasma. As such, it follows that
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TE B C3 Paux
@

where P is an auxiliary heating power, which generally comes from neutral beam injection (NBI)

or radio frequency (RF) heating. Combining Eq. (1)—(4), the resulting pedestal temperature is

_ C I:’e\uxz-E

ped = YE
N yeakV

T

&)
where C,. is now an overall constant, which will be determined as to minimize the root-mean-square
errors (RMSE) of predicted results when they are compared with experimental data. In Eq. (5), all
relevant quantities, except T, are known from each tokamak; and they describe either experimental

scheme or the geometry of plasma in the tokamak.
2.2 SCALING LAWS FOR H-MODE PLASMA

The quantity T, is deduced in various ways from many experiments. There already exist
several scaling laws that express T, in terms of plasma engineering parameters S s published
by the ITER Physics Basis (IPB) group " Here we employ with four well-known scaling laws
whose expressions of the thermal energy confinement time T, of ELMy H- mode plasma are
included below.

In the following expressions, / denotes current in MA; B toroidal field in T; P power in
MW; n density in (x10°m); R major radius in m; M effective mass in amu. An inverse aspect

ratio, & =a/R, and elongation K are dimensionless.

_ 1.06 50.325-0.67 1017 1.79 .-0.11, 0.66p 4 0.41
Treri_ggp = 0-0361° "B P"'n" "R ™"k M

_ 090 0.20 H-0.66,,04052.03 019 0925 0.2
e espongy) = 0-0291 0B 2P 0% 0RE0 029, 052

_ 0.880.07-0.69,,0402.15 ,0.64 _0.78 1 0.2
Tipgog(y.z = 0-09641 "B P n""R™"e ™' "M

T|p598(y‘4) — 00587' 0.85 B0.29 P—0.70n0.39 R2.0880.69K,0.76M 0.17

. . . . 3,578,113
More details and excellent overviews of these scaling laws can be found in .

In addition to the pedestal temperature model based on energy distribution and on H-mode

scaling laws for T, we also investigate empirical pedestal temperature model by fitting pedestal
temperature values from five tokamaks: AUG, DIII-D, JET, JT60U and MAST. The details of this

empirical model will be provided in the next section.
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2.3. SCALING OF PEDESTAL WIDTH

The temperature at the top of pedestal can be written in terms of the maximum normalized pressure

gradient that is the critical pressure gradient, ¢,

A _aBr
Toea = 2
2kr.]ped 2/UORq

(6)

where A is the pedestal width, ¢, is the permeability of free

1+ #cg (1+505 )

space, o, = 0.8s and the safety factor

q
q(x)= = 2

£1+(01'35)2J2 +0.267|In(1-0.95)| (1{1’;}2} +0.267|In (1-X)|

In this paper, five theory models for the pedestal width (see16 for more details) are applied in

determining the pedestal temperature,then the result are compared with experimental data.
A. Width scaling 1 — based on magnetic and flow shear stabilization

The scaling of the pedestal width is

-
A=Cps?=C 457510 ¥ YT |2

1 B

where p is the ion gyro radius, A, is the average hydrogenic mass. By using this scaling for the

pedestal width in Eq. (6), the temperature at the top of pedestal can be obtained from

2 2
-3 2
T, =C? 4.57x10 : BZ (A,;j % | o |
411,(1.6022x10°) | L a* JLR? ) n,,

®)

where C, is the constant of proportionality in Eq. (7).
B. Width scaling 2 — based on flow shear stabilization

The scaling of the pedestal width is

©
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By using this scaling for the pedestal width in Eq. (6), the temperature at the top of pedestal can be

determined from
4/3
(457x10°)"

2 2/3 4/3
T _ C4/3 (&j AH i
ped — 2 -16
411, (1.6022x107°) q R Noeg

(10)

C. Width scaling 3 — based on normalized poloidal pressure

The scaling of pedestal width is

B

(an
where [, is the normalized poloidal pressure and <Bg> is the average poloidal field around the
flux surface. By using this scaling for the pedestal width in Eq. (6), the temperature at the top of

pedestal can be obtained from

2
T =C2 1 ELZ(BJZ o |[ 70%s (1+ Kos)
T | 4p (1.6022x107°) L o® ) La) | n >0

(12)

where (g , the safety factor at the 95% flux surface, with geometrical effects included, is defined

g, (K‘95, Ogs)» 5) , and the geometrical factor, §,, is taken to be

|1+ x5 (1+ 263 1263, ) |(1.17 - 0.65¢)
2(1—82)2

elongation at the 95% flux surface and is taken to be 0.914 times the value of the elongation at

0, (Kos: 05, €) = which shaping effects, iy is

the separatrix, triangularity g (assumed to be approximately 0.85 times the value of

triangularity at the separatrix).

D. Width scaling 4 — based on diamagnetic stabilization

The scaling of pedestal width is
A=C p2/3 R1/3
=C, .

(13)
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By using this scaling for the pedestal width in Eq. (6), the temperature at the top of pedestal can be

obtained from
3/2

r | [ _(4570) (%]{E](&T’z
q3 R nped

" | 4, (1.6022x10°)

(14)

E. Width scaling 5 — base on ion orbit loss
The scaling of pedestal width is

A=Cy \/;,09 ~ C56‘_1/2qp [ K5
(15)

where p, is the ion poloidal gyro radius and S is a term due to squeezing of the banana orbits by

orbit
the radial electric field. By using this scaling for the pedestal width in Eq. (6), the temperature at the

top of pedestal can be obtained from

2 2
457x10° 2
Tped = Csz ( ) 16 (Ej ;AH =
4,(1.6022x107%°) | { q ) | xgaR )| nyyg

(16)

3. RESULTS AND DISCUSSION

3.1 PREDICTIONS FROM EMPIRICAL PEDESTAL TEMPERATURE MODEL

As these scaling laws in the previous section do not predict pedestal temperature values that
agree satisfactorily with experimental data, it is useful and perhaps necessary to explore alternatives
for a pedestal temperature model. In the following, we investigate an empirical pedestal temperature
model by fitting experimental pedestal temperature from the mentioned five tokamaks in terms of
plasma engineering parameters. Like before, we shall assume that the energy confinement time
depends on plasma parameter of the form:

7 oc B M MM PP RR g% g%
Therefore,

e

Toes = %n“nvav B | M ™ P R% g k™
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The values of C, and all alphas are determined from best (multiple) linear regression using
the Origin Pro software. It is found the lowest RMSE% is below 25.94%, when the values of

exponents are given in Table 1.

Table 1: Optimal values of parameters from empirical scaling of 7, in Eq. (17) are listed as well as

the RMSE and offset values.

C, 2.49 a, 0.40
Q, -0.84 o, 0.4
o, -1.13 o, 2.25
o, 0.01 Olg 0.71
Q, 0.97 Ol 2.62
RMSE % 25.9 Offset 0.004

The statistical analysis of ratios of predicted temperature values from Eq. (17) to experimental ones

is shown in Figure 1.

3000
O x
2500 - T60U
AUG
2000 - ® oo
— A mast
>
2
5 1500 A , ////
£ < 7
1000 ol m 7
- K % mo n //(/
K ol //
[~ OQQ’ © (/‘(
500 - -~
-
0, . . : :
0 500 1000 1500 2000 2500 3000
Texp (eV)

Figure 1. Predicted pedestal temperature values in the empirical model Eq. (17) are plotted as a

function experimental pedestal temperature values.
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In Figure 1, it is shown that the predicted temperature values agree well with data from
DIII-D tokamak (similar to Figures 1-4), but poorly with those from JET tokamak. For this model,
the lower and upper bounds are given as

0.51T,,, <T,q <2.10T,,, (18)

It should be remarked that the empirical model Eq. (17) yields the scaling V" for volume,
instead of 7' in Eq. (5). This is a possible reason for an improved RMSE% from over 30% to below
26%. At minimum, this model clearly improves the predictions of JT60U pedestal temperature
values.

3.2 PREDICTIONS FROM PEDESTAL TEMPERATURE MODEL BASED ON ENERGY

DISTRIBUTION

The predicted results of pedestal temperature values from the model based on energy

distribution coupled with the aforementioned scaling laws are included in Table 2.

Table 2: Optimal values of C, and their corresponding RMSE% and offset values from each scaling

law are listed.

Scaling C, RMSE % Offset
ITERH-93P 0.069 41.1 -0.098
ITERH-EPS97y 0.073 34.1 -0.060
IPB98(y,3) 0.073 30.4 -0.061
IPB98(y.4) 0.071 33.0 -0.071

From Table 2, it is evident that the IPB98(y,3) scaling law for energy confinement time
gives best agreement overall for all five tokamaks, but it only implies moderate agreement with
experiments, yielding RMSE of 30.4%.

It is found that, as expected, the model does not necessarily yield the same agreement from
one tokamak to another. The statistical analysis of ratios of experimental temperature to predicted
temperature for these scaling laws on individual tokamaks is shown in Figures 2-5. In these figures,
solid circles denote data points from DIII-D tokamak, open circles from JET, solid squares from
JT60U, open squares from AUG and open triangles from MAST. In addition, the lower and upper

dashed lines give, respectively, lower and upper bounds of predicted pedestal temperature, denoted

PS12-10
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by T

noa» DY @ linear function of experimental temperature 7, . Clearly, the closer the lower and

upper bounds are together, the more accurate the model predicts the pedestal temperature values.

The middle solid line is the ultimate goal which gives T, , =

exp’

Tmod(keV)

O JET
m JT60U
0 AUG
® D3D
A MAST

Texp(keV)

25 3

Figure 2. Using ITERH-93P scaling law, predicted pedestal temperature values are plotted versus

experimental pedestal temperature values.

In Figure 2, it is found that the predicted temperature values agree well with data from DIII-

D, but poorly with those from JT60U. For the ITERH-93P scaling law, 7, , can be given in terms of

lower and upper bounds as

0.45T,, <T,

exp mod

<2.92T,,

17

2.5 1

154

Tmod(keV)

0.5

O JET
B JT60U
0 AUG
® D3D
A MAST

0 0.5

15

Texp(keV)

25 3

Figure 3. Using ITERH-EPS97y scaling law, predicted pedestal temperature values are plotted as a

function experimental pedestal temperature values.
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In Figure 3, it is found that the predicted pedestal temperature values agree well with data
from DIII-D, but poorly with those from JT60U. However, unlike in Figure 2, here the lower and
upper bounds are closer together, and the JT60U predictions clearly lie closer to the solid line. For

ITERH-EPS97y, the predicted temperature values can be given in terms of lower and upper bounds

as
0.44T, <T, ., <2.08T,, (18)
3 7 O JET
. = JT60U
251 . 0 AUG
'
. ® D3D
24 .
R A MAST
%‘ ’
g 15 K
g 1
- ey - -
1 o _ - -
’ (o) /
0% -~
0.5 1
-
0 T T T T T
0 0.5 1 1.5 2 25 3
Texp(keV)

Figure 4. Using IPB98(y,3) scaling law, predicted pedestal temperature values are plotted as a

function of experimental pedestal temperature values.

In Figure 4, it is found the IPB98(y,3) scaling law yields qualitatively the same trends as
the ITERH-EPS97y scaling law does. IPB98(y,3) yields lower RMSE% than ITERH-EPS97y
because its upper bound is lower than that corresponding to ITERH-EPS97y. Specifically, the
IPB98(y,3) lower and upper bounds are given by

0.46T,,, <T,,q <1.91T,,, (19)

exp
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Figure 5. Using IPB98(y,4) scaling law, predicted pedestal temperature values are plotted versus

experimental pedestal temperature values.

In Figure 5, it is found that the predicted temperature values agree well with data from DIII-
D, but poorly with those from JT60U. The predictions from the IPB98(y,4) scaling law are very
similar to the previous two scaling law, with the same lower bound and slight different upper bound.
Here, for IPB98(y,4), the lower and upper bounds are given by

0.46T,, <T,,, < 2.04T,,, (20)

exp mod —

It should be remarked from Figures 2—5 that the model based on energy distribution and on
H-mode scaling laws tends to over predict pedestal temperature values in AUG, JET and JT60U, but
to under predict those from DIII-D. Overall, predictions for DIII-D are more coherent and yield best
agreement, while predictions for JT60U are most dispersed and lie significantly above the ideal line
T,..=T,,

3.3 PREDICTIONS FROM PEDESTAL TEMPERATURE MODEL BASED ON
MAGNETIC AND FLOW SHEAR STABILIZATION
The predicted results of pedestal temperature values from the models based on magnetic

and flow shear stabilization are included in Table 3.
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Table 3: Coefficients and RMSE of the models from each scaling width for type IIl ELMy H-mode

discharges.

Model Width scaling Cw RMSE(%)
la A oc ps? 0.9 48.1
2a Ao [pRq 0.15 48.0
3a A (B,R 0.02 53.7
4a 21

Ao piR3
5a Ao \[ep, 1.84 50.2

From Table 3, it is evident that the RMSE ranges from 48.0% to 53.7%. Model 2a yields

the lowest RMSE and Model 3a yields the highest RMSE.

The statistical analysis of the ratios of experimental temperature to predicted temperature

for each scaling width on individual tokamaks is shown in Figures 6-9.

8 7 o JET

= JT60U
o AUG
® D3D

Tmod(keV)

25 3

Texp(keV)

Figure 6. Using Model la (A pSZ), predicted pedestal temperatures are plotted versus

experimental pedestal temperatures.

In Figure 6, it is found that the predicted temperature values agree well with all data. For

the Model 1a, T can be given in terms of lower and upper bounds as

mod

0.25T,,, <T,

exp mod

<241T,, (21)
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Figure 7. Using Model 2a (A o a/ PRQ), predicted pedestal temperatures are plotted as a function

of experimental pedestal temperatures.

In Figure 7, it is found that the predicted pedestal temperature values agree well with data
from DIII-D, but poorly with those from JT60U. For model 2a, the predicted temperature values can

be given in terms of lower and upper bounds as

0.25T,,, <T,pq < 2.41T,, (22)

exp mod —

’ O JET
m JT60U
0 AUG
® D3D

Tmod(keV)

25 3

Texp(keV)

Figure 8. Using Model 3a (A oc , f B, R), predicted pedestal temperatures are plotted as a function of

experimental pedestal temperatures.

In Figure 8, it is found that the predicted pedestal temperatures are the same as those in
Model 2a but fit very poorly with JT60U data. For Model 2a, the predicted temperature values can

be given in terms of lower and upper bounds as
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0.22T,, <T.

exp mod

<2.35T,, (23)

8 ; o JET

. m JT60U
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Figure 9. Using Model 5a (A oc , fé‘pe ) predicted pedestal temperatures are plotted as a function of

experimental pedestal temperatures.

In Figure 9, it is found that the predicted pedestal temperature values are the same in
Model 2a but very poor agreement with JT60U data. For Model 5a, the predicted temperature
values can be given in terms of lower and upper bounds as

0.24T, <T

exp mod

<245T,, (24)

4. CONCLUSION

A pedestal temperature model based on thermal energy distribution coupled with well-
known scaling laws for energy confinement time T, computes pedestal temperature values for type
Il ELMy H-mode plasma which agree moderately well with experimental data, yielding RMS
between 30% and 42%. This model tends to over predict results from AUG, JET and JT60U, but
under predict those from DIII-D. Using a pedestal temperature model based on magnetic and flow
shear stabilization with width scaling, the predicted pedestal temperature value are between 48%
and 53% of RMSE.

An alternative empirical pedestal temperature model is investigated. By fitting many experimental
results from five tokamaks, it is found that the empirical temperature model predicts the pedestal

temperature values with RMSE of 25.9%.
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